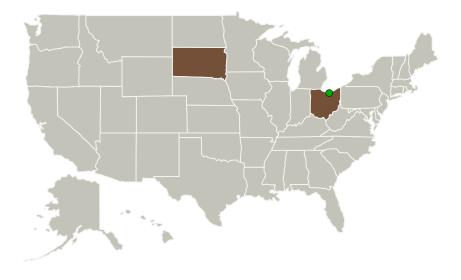
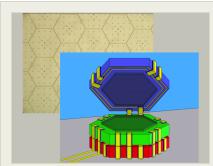
Low-Cost Multi-Junction Photovoltaic Cells, Phase I




Completed Technology Project (2013 - 2013)

Project Introduction

The proposed SBIR project will provide a pathway to dramatically reduce the cost of multi-junction solar cells. The project leverages a TRL6 micropackaging process with ~100% yield for cell assembly. Cost savings are critical as space-qualified multi-junction cells render large panel applications prohibitive. The proposed project aims to develop a greatly-simplified manufacturing process that can be performed by most compound semiconductor foundries. Thus, cost savings can be derived from increased competition and scaling by leveraging low-cost high volume manufacturers for wireless components and LED lighting devices. The preliminary 3-subcell systems has >30% efficiency at 60C-100C. For higher efficiency, a 5-subcell system has >57% efficiency. For CPV applications, LCOE of the 3-subcell system at 630 suns is 20.96 cents/kWh (real)/27.20 cents/kWh (nominal).

Primary U.S. Work Locations and Key Partners

Low-Cost Multi-Junction Photovoltaic Cells

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Low-Cost Multi-Junction Photovoltaic Cells, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Black Hills Nanosystems	Lead Organization	Industry Small Disadvantaged Business (SDB), Women- Owned Small Business (WOSB), Minority-Owned Business	Rapid City, South Dakota
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations		
Ohio	South Dakota	

Project Transitions

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138274)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Black Hills Nanosystems

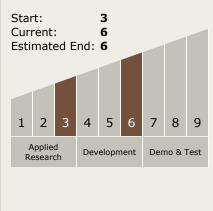
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

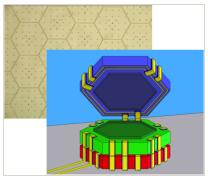

Program Manager:

Carlos Torrez

Principal Investigator:

Gina Kim

Technology Maturity (TRL)


Small Business Innovation Research/Small Business Tech Transfer

Low-Cost Multi-Junction Photovoltaic Cells, Phase I

Completed Technology Project (2013 - 2013)

Images

Project Image

Low-Cost Multi-Junction Photovoltaic Cells (https://techport.nasa.gov/imag e/131706)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 TX03.1 Power Generation and Energy Conversion
 TX03.1.1 Photovoltaic
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

